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TlCuCl3 is a quantum-spin-1
2 system which shows a gap between the singlet ground state of the Cu2+ dimers

and the first excited triplet Sz= +1 state for magnetic fields �0H��0Hc�5.5 T. At larger magnetic fields the
gap is suppressed, and a Bose-Einstein condensation of triplets is supposed to occur, leading to a magnetic
phase with antiferromagnetic long-range order of the transverse spin components. In this study we calculate the
fraction of condensed magnetic quasiparticles of TlCuCl3 from magnetization M�T ,H� data. At T=0 K and
right above the critical field Hc, this fraction is �98% of the total number of triplons, and is independent of the
direction of the magnetic field if we assume the presence of a small intrinsic magnetic background with S
=1 magnetic moments.
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I. INTRODUCTION

Low-dimensional quantum-spin systems exhibit a variety
of quantum phenomena that have gained much interest in the
last decade.1–5 TlCuCl3, for example, is a material in which
magnetic quasiparticles carrying spin S=1 �spin triplet states,
here called triplons� are believed to form a Bose-Einstein
condensate �BEC� above a critical field �0Hc�5.5 T and at
low temperatures.4,5 Meanwhile several other materials have
been found that exhibit various features which can be ex-
plained within the framework of a condensation of quasipar-
ticles with integer spin.6–9

The magnetic properties of TlCuCl3 are determined by the
exchange interactions between the Cu2+ ions which are ar-
ranged in dimer pairs within Cu2Cl6 clusters. The magnetic
ground state of TlCuCl3 is a nonmagnetic spin singlet that is
separated from the first excited triplet state by an excitation
gap ��0.7 meV in zero magnetic field. This gap has been
measured, for example, by neutron-scattering and electron-
spin-resonance �ESR� measurements10,11 which revealed that
this gap is due to the strong antiferromagnetic interaction J
=5.68 meV in the planar dimer of Cu2Cl6. The neighboring
dimers are coupled by strong interdimer interactions along
the double chain and on the �1 0 −2� plane.10,12

As soon as the external magnetic field H is larger than a
critical field Hc with g�B�0Hc�T=0�=� �where �B is the
Bohr magneton and g is the Landé g factor�, the excitation
gap closes due to the Zeeman splitting, and the triplet states
Sz= +1 are populated, eventually forming the BEC. The
three-dimensional �3D� interdimer interactions drive this
quantum phase transition to finite temperatures, leading to a
temperature-dependent critical field Hc�T�. The characteristic
off-diagonal long-range order of the BEC manifests itself in
the antiferromagnetic ordering of the spin system on the
plane perpendicular to the applied magnetic field.13

The idea of BEC has already been used quite successfully
to explain the transition of “normal” to “superfluid” 4He.14,15

The strong interactions that exist in liquid 4He may alter the
nature of the transition, however. For instance, while

90–95 % of the particles of an atomic ensemble are in the
superfluid phase below the transition temperature of an
atomic BEC, just a few percent ��9%� of the helium atoms
are condensed in superfluid 4He.

In this paper we focus on the condensed phase of triplons
in TlCuCl3 at magnetic fields �0Hc��0H�9 T and at tem-
peratures down to T=1.8 K. From magnetization M�T ,H�
measurements, we extract the density of condensed triplons
at T=0 K for H �b and H � �201�. Taking various possible
contributions to the total magnetization into account, we
show that the density of triplons forming the condensate is in
fact the same for both directions.9 We also determine the
magnetic-field dependence of the fraction of triplons forming
the condensate. The quantitative results presented here con-
firm the scenario of the formation of a weakly interacting
Bose gas of triplons right above Hc,

5,16 and we conclude that
the interaction increases with increasing particle density, i.e.,
with increasing magnetic field H.

II. MAGNETIC SUSCEPTIBILITY FOR T�20 K

Magnetic-susceptibility measurements were performed in
a commercial physical property measurements system
�PPMS; Quantum Design� on a TlCuCl3 single crystal with
mass m=12.36 mg, for 1.8 K�T�300 K at �0H=1 T for
H �b and H � �201�. The susceptibility ��T� of TlCuCl3 is
typical for a low-dimensional spin gap system, showing a
well-pronounced maximum at T�max

�36 K and an exponen-
tial decrease at low temperatures indicating the existence of a
gap � between the ground state and the first excited triplet
state; see Fig. 1. For Heisenberg spin systems with identical
spin subsystems that are weakly coupled to each other, a
good fit to the data in the paramagnetic regime is provided
by the molecular mean-field theory �MFT� and its
extensions.17 We therefore used this approach within the
model of dimers coupled by an effective interdimer coupling

J̃, representing the sum of all exchange coupling constants
Jkl for a given dimer k interacting with neighboring dimers
l.17 An additional temperature-independent diamagnetic term
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�0 which contains the orbital diamagnetic core contribution
�core �including the background contribution of the sample
holder� and a paramagnetic Van Vleck contribution �VV are
considered.

We therefore fitted the magnetic susceptibility ��T� for
temperatures T�20 K according to

��T� = �0 + �MF�T� , �1a�

with

�0 = �core + �VV �1b�

and

�MF�T� =
�dimer�T�

1 + �dimer�T�
J̃

NAg2�B
2�0

. �1c�

Here,

�dimer�T� =
NAg2�B

2�0

3kBT

2�S + 1�exp�−
J

kBT
	

1 + 2�S + 1�exp�−
J

kBT
	 �1d�

is the susceptibility of a noninteracting spin-dimer system
with single spins S= 1

2 and the intradimer coupling J. �MF
accounts for the mean-field correction.17

For a given measured set of ��T� data, we therefore used

four fitting parameters: �0, g, J, and J̃. We forced the values

for �0, J, and J̃ to be identical for both magnetic-field direc-
tions. This restriction is physically reasonable, since these
three fitting parameters are independent of the magnetic-field
orientation. A small anisotropy of the g factor was consid-
ered, however, although it is not predicted by ESR
measurements.11 In fact, the obtained g values for the two
investigated crystallographic directions are the same within
the error margin; see Table I. The best obtained fits are
shown in Fig. 1. They yield a good description of the experi-
mental data for T	20 K. However, the distinct upturn in
��T� at lower temperatures is not at all reproduced by the
fits. We believe that this term is intrinsic for TlCuCl3,11,18

and we shall discuss it in more detail in Sec. III. Note that
the inclusion of a Curie-type term for fitting the data at T
�20 K does not significantly change the results presented in
Table I.

The value of the intradimer coupling J is close to the
result obtained by neutron-scattering measurements �J /kB
�−64 K �Ref. 10��. For TlCuCl3 the interdimer exchange

interaction J̃ is a sum of three exchange constants Ja, Ja2c,
and Jabc which are defined in Ref. 10.

Unfortunately, the fit does not allow us to distinguish be-

tween these interaction constants, but the fact that J̃�J
clearly shows the strong 3D coupling between the dimers.
From Eq. �1a� we find that the peak value �max=��T
�36 K� increases with increase in either the g factor or the
intradimer coupling constant J, or with decrease in the inter-

dimer coupling constant J̃. Since our value of J is consistent
with published data from neutron-scattering measurements,10
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FIG. 1. �Color� The magnetic susceptibilities ��T� of TlCuCl3
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TABLE I. The extracted fitting parameters from ��T� data of

TlCuCl3 �T	20 K�. �0, J, and J̃ were forced to be identical for the
two field directions.

H �b H � �201�

J /kB �K� −61 
1

J̃ /kB �K� −43.5 
0.5

�0 �m3 /mol� −2.0�10−9 
10−10

g 2.36 2.39 
0.05
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the slight overshoot of the fitting curve with respect to the

measured data around �max implicates an underestimate of J̃
and/or an overestimate of the Landé g values. The latter sce-
nario is supported by comparing our results to high-precision
ESR measurements, which obtain a value of g=2.06 for both
magnetic-field directions.

III. LOW-TEMPERATURE MAGNETIZATION

In the theory of BEC of magnetic quasiparticles in insu-
lating materials, the total magnetization �to be more precise,
the total magnetic moment� M =g�BN is proportional to the
total number of excited triplons, N, which depends on both
the temperature T and magnetic field H.5 We therefore de-
cided to analyze in detail the low-temperature region of the
magnetization for both low magnetic fields �1 T��0H
��0Hc� and high magnetic fields ��0Hc��0H�9 T� using
a consistent approach including adequate contributions for
the respective magnetic-field regions. We note here that all
the magnetization data presented in this work are expressed
as magnetic moment M per single Cu2+ ion. The later used
quantity m�T�=M�T� /Nd=g�Bn�T� �where Nd is the number
of dimers and n�T�=N�T� /Nd is the total triplon density�
differs from that by a factor of 2. All values extracted from
fits and calculations are presented in the latter units.

A. Magnetization M(T) for 1 T��0H›�0Hc

Figure 2 shows the variation in M of TlCuCl3 at low
temperatures along the crystallographic b and the �201� di-
rections for magnetic fields of up to �0H=5 T. The magne-
tization decreases exponentially to almost zero with decreas-
ing temperature for both crystallographic directions, but
shows an upturn at low temperatures for low magnetic fields.
With increasing magnetic field the anisotropic behavior of
the magnetization in the two different field orientations be-
comes apparent. Because in both field directions the upturn
in M at low temperatures is gradually suppressed with in-

creasing H, the magnetization curves for H � �201� cross at
Tcross�3.2 K. For H �b, a similar crossing of M�T� data can-
not be seen in the analyzed temperature range; but by ex-
trapolating the respective magnetization curves to lower tem-
peratures, a Tcross below 2 K seems to be plausible.

This crossing of M�T� data is caused by the fact that the
upturn in M�T� at low temperatures does not grow linearly
with H. Moreover, this upturn is quantitatively different in
the two considered field directions. If this low-temperature
contribution was due to an extrinsic paramagnetic impurity
phase, it could be expected to be isotropic. We therefore
consider this behavior to be intrinsic to TlCuCl3. This upturn
in M�T� can be expressed as a temperature- and field-
dependent Curie-Weiss-type term, assumed to be propor-
tional to the Brillouin function BS�x� with x
=g�B�0HS /kBT and a constant CS. Because we assume this
term to be intrinsic to the here studied dimer system, it is
reasonable to assign it to magnetic moments associated with
the triplet states with S=1. A similar observation confirming
this fact was reported in Refs. 11 and 18. The magnetic-field
dependence of our low-temperature data showing an almost
saturated behavior in M�H� for H�Hc �see Fig. 3� can in-
deed be qualitatively well reproduced by assuming a magne-
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tization term that is proportional to a Brillouin function
BS�x�. The additional H dependence for H�Hc can be ex-
plained by taking again a diamagnetic term mdia=�0H and an
additional paramagnetic term mHL�H� �to be discussed be-
low� into account. However, the quality of corresponding fits
to our low-temperature M�H� data does not allow us to
clearly distinguish between S=1 and S= 1

2 . Therefore, we
will consider in the following both scenarios for the Curie-
Weiss-type term CSBS�x�, and we will later argue that only
the S=1 case fits to our data in a physically meaningful way.

From the expression for the free energy per unit length of
a Heisenberg ladder,19

f = −
kBT

2

1 + 2 cosh�g�B�0HS

kBT
	�z�T� , �2a�

with

z�T� =
1

2�
�

−�

�

e−
k/kBTdk , �2b�

we can estimate the magnetization per dimer by multiplying
f from Eq. �2a� with the mean dimer-dimer distance
ā= �abc sin ���1/3�=0.79 nm, where a, b, and c and
�=96.32° are taken from crystallographic data of TlCuCl3.13

Using a simple quadratic approximation for the triplon dis-
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persion relation, 
k��+�2k2 /2m� �where m� corresponds to
the effective mass of the triplons�, one obtains19

z�T� �
1

2
�
� �2

2m�kBT
	−1/2

e−�/kBT. �3�

For the magnetization per dimer we therefore have

mHL�T� = − ā
� f

�H
= d
Te−�/kBT sinh�g�B�0H

kBT
	 , �4a�

with

d = g�Bā
 kBm�

2��2 . �4b�

In order to analyze the upturn in M�T� at low T, we include
the above-mentioned magnetization term,

mup�T� = g�BS · � · CS · BS�g�B�0H

kBT
S	�� = 1 �S = 1�

� = 2 �S = 1
2� �5�

for a fixed magnetic field H. We distinguish between S= 1
2

�nonintrinsic paramagnetic impurities �= 1
2 � and the scenario

S=1 �intrinsic term related to triplet states �=1�. The con-
stant � is introduced here in order to count the magnetic
contribution mup per dimer for both scenarios. We fitted the
magnetization data at low enough temperatures �T�5 K�
and 1 T��0H�5 T for both field directions according to

m�T� =
M�T�

Nd
= mHL�T� + mup�T� + mdia

= g�Bā
 kBm�

2��2 · 
Te−�/kBT sinh�g�B�0H

kBT
	

+ g�BS · � · CS · BS�g�B�0H

kBT
S	 + mdia �6�

with g=2.06.
Because we were using the T-independent diamagnetic

contribution mdia=�0H extracted from the high-temperature
susceptibility fits presented above, only the gap �, the con-
stant CS �for S=1 or 1

2 �, and the effective mass of a triplon,
m�, were fitting parameters. The corresponding fits to the
magnetization data are shown in Fig. 4, while the corre-
sponding results for the fitting parameters are presented in
Fig. 5. The values for the gap � slightly vary with magnetic
field for both field directions around � /kB�13 K, which is
somewhat larger than ��0.7 meV=8.3 K �Ref. 10� deter-
mined by neutron scattering. The triplon mass m��0.2
�10−29 kg is an order of magnitude smaller compared to the
results from calculations and a corresponding analysis of
high-field magnetization data within the Hartree-Fock
approximation.20 This discrepancy might be explained by our
choice of a simplified quadratic energy-dispersion relation
for this temperature region. The range of validity of a qua-
dratic approximation is indeed restricted to lower tempera-
tures �T�1 K� �Refs. 16, 19, 21, and 22� that are not acces-
sible in our experiment.

The Curie-type contribution CS decreases for both cases
S=1 and S= 1

2 with increasing magnetic field H. For both

field directions CS�H� shows a similar trend, although the
variation with H is much less pronounced for S=1. Since CS
is expected to be a constant for a given magnetic-field direc-
tion, this fact already here strongly supports an S=1 scenario
for a correct description of the paramagnetic background. We
may speculate that this Curie-type term with S=1 comes
from a contribution of defects in the crystal or from dimers
that are situated near the crystal boundaries.

B. Magnetization M(T) for 5.5 T��0H�9 T

The temperature dependence of the magnetization M�T�
along the applied magnetic field H shows a cusplike mini-
mum at a critical temperature Tc�H� for fixed magnetic field
H	Hc; see Fig. 6. The increase in M for T�Tc is a conse-
quence of the condensation of the magnetic quasiparticles
and the increasing number of particles, Nc, in the ground
state forming the condensate. Theoretical arguments suggest
within a simplified model a T dependence of M � �1− T

Tc
�3/2

for T�Tc,
5 which is not observed in the experimental data,

however.
At high magnetic fields we have therefore fitted the low-

temperature magnetization per dimer, m�T�, according to a
more general power law including the diamagnetic contribu-
tion that we extracted from high-temperature magnetic-
susceptibility measurements, and again a net paramagnetic
moment mup�T ,H� assumed to be proportional to the Bril-
louin function BS�x� for S=1 and S= 1

2 , respectively. For
6 T��0H�9 T we use

m�T� =
M�T�

Nd
= g�B

N�T�
Nd

+ mup�T� + mdia

= g�B�ncrit + n0
1 − � T

Tc
	���

+ g�BS · � · CS�H� · BS�g�B�0H

kBT
S	 + mdia, �7�
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where ncrit=N�T=Tc� /Nd is the critical density at which con-
densation occurs corresponding to the normalized magneti-
zation m�T=Tc�=g�Bncrit. The physical meaning of the ex-
ponent � �see Fig. 7�b�� is not discussed here, although a
possible interpretation is presented in the Appendix.

At zero temperature we have for fixed magnetic field H

m�T = 0� = g�B�ncrit + n0� + mup�T = 0� + mdia

= g�Bn�0� + mup�T = 0� + mdia �8�

with the total triplon density at T=0 and n�0�=ncrit+n0.
For an ideal Bose gas n�0� corresponds to the condensate

density nc�0�. As soon as interactions between the particles

are considered, the depletion of the condensate has to be
taken into account. The quantity

n�0� = nc�0� + ñ�0� �9�

is then a sum of the condensate density nc�0� and the density
of noncondensed particles, ñ�0�. The latter term represents
the number of triplons per Cu2+ dimer scattered out of the
ground state due to the interactions between the particles. It
depends on the number of condensed particles and can be
expressed as5
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ñ�0� =
1

3�2�mU0nc�0�
�2 	3/2

, �10�

where m��2.8�10−29 kg is the mass of a triplon and
U0 /kB�315 K �Ref. 20� is the two-particle interaction po-
tential. Replacing ñ�0� in Eq. �9� with the expression in Eq.
�10�, we obtain

n�0� = nc�0� +
1

3�2�mU0nc�0�
�2 	3/2

. �11�

From our fits according to Eq. �7� and with n�0�=ncrit+n0,
we can now calculate the condensate density at zero tem-
perature nc�0� for various magnetic fields using Eq. �11�; see
Fig. 7�a�.

As one would expect from simple arguments,5,20 nc�0�
increases with increasing magnetic field. It is essential to
note that the number of triplons Nc�0�=nc�0�Nd forming the
condensate at T=0 is the same for both field directions only
in the S=1 scenario for mup�T� �see Fig. 8�, and only in this
scenario nc�0� extrapolates to zero at the correct critical field
�0Hc�5.5 T. These facts again strongly support our hy-
pothesis that mup�T� is intrinsic with S=1, and it confirms the
interpretation of the magnetic field H acting as the chemical
potential.9 Right above the critical field Hc, the percentage of
the condensed particles, nc�0�, with respect to the total den-
sity of triplons, n�0�, is approximately 98% and slightly de-
creases with increasing magnetic field; see Fig. 9. This result
is consistent with a similarly low noncondensed magnon
density as calculated in Ref. 16, where ñ�0� increases from
zero for H=Hc to approximately 7% of the total triplon den-
sity at T=0 in �0H=7 T. From the high percentage of con-
densed particles, we can confirm that the triplons in TlCuCl3
form a weakly interacting Bose gas16 right above Hc, and
that the interaction increases with increasing particle density,
i.e., with increasing magnetic field H.

Finally, we want to mention that the Curie-type contribu-
tion CS is small and essentially constant for H�Hc in both
the S= 1

2 and the S=1 scenarios; see Fig. 7�c�. However, the

corresponding data for S=1 are more or less smooth continu-
ations of the respective data for H�Hc, in very contrast to
the CS data for S= 1

2 that show a discontinuity around H
=Hc; see Fig. 7�c�. The comparably moderate variation in CS
with H over the whole considered range of magnetic fields
for the S=1 scenario �covering both the normal phase and
the BEC obeying an entirely different physics� may indicate
that CS is indeed a constant for each magnetic-field direction,
and that our interpretation of a S=1 paramagnetic back-
ground is correct.

IV. CONCLUSIONS

We have presented an analysis of magnetization M�T ,H�
data of TlCuCl3 and we calculated the density of condensed
particles, nc�0� at T=0. The percentage of nc�0� with respect
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to the total density of triplons, n�0�, is approximately 98%
right above the critical field Hc and slightly decreases with
increasing magnetic field. We demonstrated that this fraction
is the same for both H �b and H � �201� if we assume the
presence of a small number of intrinsic S=1 magnetic mo-
ments that are not part of the Bose-Einstein condensate of
triplons even at the lowest temperatures.
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APPENDIX

We want to emphasize that we do not interpret the expo-
nent � in the power-law approach �Eq. �7�� used for fitting
the low-temperature magnetization data at high magnetic
fields as a universal critical exponent. In this sense its physi-

cal meaning is not clear. In general, the normal fluid density
in a dilute Bose gas in the condensed phase is proportional to
T4 at low enough temperatures �T�T��nU0 /kB�, where n is
the total particle density and U0 is the interaction energy.

In the case of TlCuCl3 we can estimate T� by replacing
n�ncr and U0 /kB�313 K �Ref. 22�; see Fig. 10. The values
for � extracted from the fits �see Fig. 7�b�� vary around �
�4 with a decreasing tendency and increasing fitting error as
H→Hc. This can be explained by the fact that for high mag-
netic fields T� is fairly close to Tc, whereas for low magnetic
fields the difference between the two characteristic tempera-
tures increases, thereby restricting the validity of the T4

power law to very low temperatures that are not accessible in
our experiment. Nevertheless, it is clear that the increasing
magnetization for T→0 is related to the increasing fraction
of the condensed particles, nc�T�. The evaluation of n�0�
from our phenomenological power law �see Eq. �7�� and the
calculation of nc�0� using Eq. �11� give, in any case, a reli-
able estimate of the intercept of nc�T� at T=0, irrespective of
the correct functional form of nc�T�.
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